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Abstract—Fluid structures can be classified into two categories: fluid filaments and fluid membranes.
If the cross section of a fluid filament vanishes, the fluid filament is called a fluid line, whereas if the
thickness of a fluid membrane vanishes, the fluid membrane is called a fluid sheet. In this paper, the local
instantaneous balance equations are derived for a line and a sheet of fluid moving in a three-dimensional
geometrical space. For a filament, the balance equations are obtained by using quantities averaged over
the cross section of the filament. For a membrane, the balance equations are obtained by using quantities
averaged over the height of the membrane. It is shown that the local and averaged formulations are
consistent. All these balance equations have been rigorously derived by applying original mathematical
theorems given in the appendices to the paper. Such balance equations can be used to model single-phase
flow in bends or coils, the dynamic centering of thin liquid shells in capillary oscillations and the instability
of an annular jet.
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1. INTRODUCTION

The instability of a thin liquid jet can be studied by using the mass and momentum balance
equations averaged over the cross section of the jet (Meier et al. 1992). The dynamics of a flame
front has been modeled by considering the flame front as a surface moving in a three-
dimensional space (Candel & Poinsot 1990). These two examples among others show that the
dynamics of fluid structures such as filaments or membranes is of interest in many different fields
of engineering.

Fluid structures can be classified into two categories: fluid filaments and fluid membranes.
If the cross section of a fluid filament vanishes, the fluid filament will be called a fluid line,
whereas if the thickness of a fluid membrane vanishes, the fluid membrane will be called a fluid
sheet.

The derivation of the balance equations for the above-defined fluid structures is not a trivial
problem. As will be seen in the following, several authors have tried to derive some of these balance
equations but their derivations lead to incomplete equations (Zak 1979) or deal only with the mass
balance for a sheet (Candel & Poinsot 1990).

It is the purpose of this paper to establish the mass and momentum balance equations rigorously.
In section 2, one- and two-dimensional fluid structures, namely lines and sheets, are considered.
Section 3 deals with the corresponding three-dimensional structures: filaments and membranes.
In section 4, two types of modeling are proposed for thin structures such as thin filaments and thin
membranes. The first one is a one-dimensional model based on a one-dimensional approximation.
The balance equations are obtained from the equations of section 2, where the line (or surface)
density is replaced by the product of a constant volumetric density by a cross-section area (or a
height). In the second model, the equations are obtained by asymptotically reducing the thickness
of the filament or the membrane in the equations derived in section 3. We will then show that
the two models are completely equivalent. Finally, section 5 deals with some applications of the
balance equations established in sections 2-4: one-dimensional modeling of single-phase flow in
bends or coils, dynamic centering of thin liquid shells in capillary oscillations and instability of an
annular jet.
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2. THE FLUID LINE AND THE FLUID SHEET

2.1. Definitions
2.1.1. The fluid line

A fluid line (figure 1) is a moving material line represented in space by a curve (I',). Every material
point M in the fluid line is determined by

OM =1[p(1), 1], (1]
where p is a parameter. The density of the line (mass per unit length) will be denoted by p, and

the unit tangent vector of the curve (I')) by t.

2.1.2. The fluid sheet

A fluid sheet (figure 2) is a moving material surface represented in space by a surface (S,).
A curvilinear coordinate system (x', x?) is chosen on the surface. Every material point on the fluid
sheet is determined by

OM =rfx (1), x*(2), 1]. [2]
The density of the sheet (mass per unit area) will be denoted by p,.
2.2. Mass Balance

2.2.1. The fluid line
The mass balance for a material line of finite length AB reads (figure 3):

d
4 LB p,ds =0, [3]

where ds is the elementary arc length.
Equation [3] can be transformed by using an original transport theorem for line integrals ([A3]
in appendix A) into the following form:

0 0 A%
f |:—pl+V-t—p'+p,——-t]ds=0, {4]
ap| Ot Os s

where V denotes the velocity of a material point of the fluid line. Therefore, it can be deduced

that

0 0

Tt (V) =0. [5]
S

In order to compare our equations with similar equations proposed previously, another form
of this relation can be given by introducing the velocity of a geometrical point attached to the
line U,

0
U,-é(——r) with fixed p. (6]
ot
Equation [5] now reads:
op, | Op, ou, ¢ _
S+l Ut pe L+ = [p(V = Up) 1] = 0. [7]

2.2.2. The fluid sheet

We consider a material surface (&) (figure 4), defined as a part of the surface (S,) limited by
a curve (C). The mass balance reads:

d
T f p,da =0. (8]
Y
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r(t,s) (l‘l)

Figure 1. The fluid line. Figure 2. The fluid sheet.

Equation [8] is transformed by means of the Reynolds transport theorem for a material surface
(Aris 1962) into the following form:

J' (% +V-grad, p, + p, div, V) da =0, 9]
g

where the vector V denotes the velocity of a material point of the fluid sheet, div, denotes the surface
divergence and grad, the surface gradient defined in appendix B.
It can then be deduced that

G, .
% +V-grad, p, + p,div,V=0. (10]

As the velocity U, of a point attached to the fluid sheet is defined by

Us£<g—:) with x' and x? fixed, [11]
equation [10] now reads:
%: U, grad,p, + p, div, U, +div, p(V — U, =0, n2)

where (V — U,)* is the projection of the vector (V — U,) on the tangential plane.
Remark. Equations [5] and [10] can be put into the same form taking into account the definition
of the operator div, (appendix B):

o0

% +div,(,V) =0 [13]
and

op, | .

2: 4 div,(p,V) =0. [14)

2.3. Momentum Balance

The method used to establish the equations is the same as in section 2.2, and only the final results
are given.

MF 19/4—F
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(©)

v
Figure 3. Material line of finite length. Figure 4. Material surface.
2.3.1. The fluid line
The linear momentum balance reads:
d
— p,Vds = j pf,ds + T(B) —T(A), [15]
dr Jas AB

where T is the force exerted on a point of the fluid line by the fluid located on the z side and f,
is the external force per unit length.
It can then be deduced that

ot i s Js
or, by introducing the speed U,

i) 0 v oT
—P1V+(V'T)5;(P1V)+P1V< >_plf1_—=0 [16]

0 0 oU, 0 oT
5P YU f)$P:V+PlV<f —(3S—>+5(P1V[(V—Ur) t)-pf—Z-=0. [17]

2.3.2. The fluid sheet

The linear momentum balance reads:

d

—f p,Vda =I T,-vdC +J p.f . da, [18]
dt < C S

where v is the normal unit vector to C located in the tangential plane to % and outwardly directed,
T, v dC is the elementary force exerted on an arc dC of curve (C) by the fluid located on the v
side and f, is the external force per unit area. Therefore,

0
7PV Hdivi(p,VV) —p f, — div, TF =0, (19]

where
Tr= (T, a)a,. [20]
In this relation, the vectors a; (B = 1, 2) are the unit vectors of the local basis of the surface.

If the speed U, is introduced, [19] becomes:

0
E p.\V + div.\' pa(VUa) + divs p.)[V(V - Us)] - psfx - divs TI* =0. [21]

Remark. For the two fluid structures studied above, the analogous expressions for the forces
exerted by the external parts of the fluid line and the fluid sheet are, respectively:

e fluid line, T,-t (P =A or B);
and
e fluid sheet, T, -vdC.

The components of the tensors T, and T,dC have the dimension of a force.
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()

Figure 5. The fluid filament. Figure 6. The fluid membrane.

Generally, the force T, t is not tangent to the curve (I',) and the elementary force T,-v dC is
not in the tangential plane to the surface (S,). We will say that the fluid line is made up of an inviscid
fluid if T,=T,U, (i.e. T,-7 =7T,t) and that the fluid sheet is made up of an inviscid fluid if
T,=T,U (i.e. T,-vdC = T,v dC), where U is the unit tensor.

3. THE FLUID FILAMENT AND THE FLUID SHEET

3.1. Definitions
3.1.1. The fluid filament

The fluid filament is the three-dimensional fluid structure associated with the fluid line and is
defined in the following way (figure 5). We associate to any point of a space curve (I') a plane,
circulart section (S) of center M, radius R and whose plane is normal to (I'). The radius R depends
on the arc length s along (I') and on the time ¢; we suppose that R is smaller than the radius of
curvature & of (I').

The volume generated by (S) when M describes (I') constitutes the fluid filament.

(C) is the circumference of radius R whose center is M and which is located in the section
plane. (X) is the lateral surface of the tube defined above and will be called the interface of the
filament.

3.1.2. The fluid membrane

The fluid membrane (figure 6) is the three-dimensional fluid structure associated with the fluid
sheet and is limited by two surfaces, (S, ) and (S_ ), symmetrically located with respect to a surface
(S). At any point M of surface (S), one associates a segment PP’, normal to (S) and of length A.
The two points P and P’ are symmetrically located with respect to M and the length 4 depends
on the time 7 and M. In the following, a part (%) of the surface (S), limited by the closed curve
(C) is considered.

The method used to establish the equations of mass balance and linear momentum balance is
the same as for the filament and the membrane. As a result, we will derive in detail only the mass
balance for the fluid filament. It is assumed, in the following, that the different quantities are
sufficiently smooth.

3.2. Mass Balance
3.2.1. The fluid filament
We start with the local equation

%p,. +divp V=0, [22]

tFor a noncircular surface, the method used leads to analogous results.
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where p, is the density of the fluid constituting the filament. We average the local equations over
the cross-section area S(M, t), in the manner suggested in appendix C. We thus write

fjg;p,.l da + Jf divp,Vida =0,

S(M.1) S(M.0)

where
Azl ——; [23]

(x, y) denote the coordinates of a point located in the cross section whose local basis is (M; n, b)
and £ is the radius of curvature of (I'). The cross section S(M, ¢) is obtained for a fixed value
of p. By using the Leibniz and Gauss theorems established in appendix C ({C5] and [C7]), the
following equation is obtained:

_”p,gda ( )“p,xdaﬂvr r)— ”p,xda

SM.) S(M.1) SM.1)

+2 jjp,.(V——Us)-rda+J p YU 0 0 4
0s M. LU LT

SM.1)

where U, is the speed of a point attached to the geometrical line (I'), U, -7 is the speed of
displacement of the cross section (§), T is the unit tangent vector to the curve (I',), Ug, ng is the
speed of displacement of the interface (Z), ny is the unit vector normal to the interface (Z),
outwardly directed from the fluid filament, and n. is the unit vector normal to (C) located in the
cross-section plane.

Taking into account the definition of an averaged quantity over the section (S),

e e

(f} ~ SM.1) S(M I) [25]
Ada
S(M.1)
[24] can be written as
0 ou
— R (p.} + nR*{p}t - —' +@WUr- ©) 5 (nRz{p. »

ot

CM.1) LU Ve

+ 2 @R (v~ U) g) + f p U2 05 4o, e)

where g' is defined by the relation

1

I

SOy

g [27]

In the absence of phase change at the interface we have
(V—-Us) ny =0,
and the area-averaged mass balance equation now reads:

6U

)
E nRZ(pl } + "Rz(Pz }

(nRz(p.})+-—(nR2(Pl(V U)-g'p=0.[28]
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3.2.2. The fluid membrane
Starting from the local equation

%pr +divp, V=0,

we average it over the segment PP’. We then transform this averaged equation by means of the
Leibniz theorem, [C12], and the Gauss theorem, [C14], and thus deduce the segment-averaged
equation for the mass balance:

a +hi2 +hf2 +hi2
- up, dx? + div, U, J up, dx*+ U, - grad, J up, dx?
ot J_wn —h2 —2
+h/2 vV — U -N +h/2
+div, (J pos(V = Uy,) dx’) + [upl. (——N—)—~] =0, 9]
—hf2 +° 8 —hf2
where
p=1—2Hx+ K(x*) (30]
with
x'=MQ- a 31]

for every point Q of the segment PP’. H is the mean curvature, K is the Gauss curvature and
a, is the unit vector normal to the surface (S); U, is the speed of a point attached to the
surface (S), Uy, is the velocity defined by [C11] in appendix C, Us N, is the speed of
displacement of the interface (S, ) and N, is the unit vector normal to the interface outwardly
directed.

Taking into account the definition of an averaged quantity over the segment PP’,

+h/2
Su dx?
e 32]
f u dx?
—hj2
with
+h/2 h2
h*aj pdx3=h<l+K—~>, [33)
2 12

the averaged equation can be written as

2 1% o>+ H* (o, 34V, U, + U, grad, (h*p, )

=0. [34]

Ve —Us )N, +m2
+ div, [A*{p,(V — Ug, D] + [MP.-( Sy 5.) i]

Ni'a3

—h/2

In the absence of phase change at the interface, the segment-averaged equation for the mass balance
can be written as

%h"@v) +h*{p.>div,U, + U, - grad, h*{p, > + div,(h*<{p.(V — Uz)>) = 0. (35]
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3.3. Linear Momentum Balance

3.3.1. The fluid filament

Starting with the local equation of linear momentum, the averaged equation over the section (S)
for the momentum balance is found to be

0 ouU
—7R¥p VI +nR¥p Vht - —~

5,
ot 3 +U; 1) p (R*{p.V})

+ % R (p,V(V-U;)—T) g'} — nR*p,F}

+ [p.V(V—-U;)—T] ng

c LU e

Adl =0, [36]

where F is the external force per unit of mass and T is the stress tensor.
The mass and momentum balances at the interface (£), when there is no external fluid present,
lead to

(V—‘Uz) 'n2=0
and
-U— 'nz=2H20'n):,

where o is the surface tension and Hy is the mean curvature of the interface (£). The averaged
equation then becomes

0 0 0
9 tRYp, V) + tRYp VIt - 0 4+ (U, 1) 2 (xRp. V)
ot Os os

Hsony

+ inRz((p,.V(V —U)—T)-g'} —nR¥p,Fy —2 f Adl=0. [37]

Js c My Ne

3.3.2. The fluid membrane

We start with the local equation of linear momentum. Applying the theorems of Leibniz
and Gauss ([C16] and [C18]), we obtain the equation averaged over a segment by means of
definition [32]:

% R*p. V) + h*{p,V)div, U, + grad,(h*{p.V)) - U,

+div,[A*<(p, V(V = Uz) — T) - g'Hay]

[#[PvV(V —Us,)-T1 N+]“'/2
+ + t
N, -a,

—h*p.F) =0. [38]

—h2

In [38] a; (8 =1,2) denote the base vectors of the local basis of the surface (S) (a,,a,, a;)
and (g, g;, ;) is the local basis of the space associated with the curvilinear coordinates system x?,
x3. The mass and momentum balances at the interface (), if there is no external fluid present,
lead to

(V-Us,) N, =0

and
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where H, denotes the mean curvature of the interface S, . The averaged equation can then be
written as ‘

T R,V + (div, Uh*(p, V> + gead, k*(p, V) U,

=0. [39]

+ div 150, V(Y — Up) — T) - g8, — h*(p, F — [M u]+h/2

N, -a

—hf2

4. THE THIN FILAMENT AND THE THIN MEMBRANE

4.1. Introduction

We consider now a thin filament or a thin membrane. The filament, as in section 3, is built on
a curve (I',) and is generated by a disk of radius R(s, t) normal to I',. The diameter of the cross
section remains much smaller than a characteristic length of the line (I',). For a rectilinear filament,
a characteristic length can be the length of the filament. For a curvilinear filament, a characteristic
length can be chosen as

gmin = mf(.@, g.),

where 1/ is the curvature and 1/ is the torsion. Similarly, the membrane is built on a surface
(S) and is generated by segments orthogonal to the surface S, symmetric with respect to (S). The
half-thickness of the membrane remains smaller than a characteristic length of the surface S.

For a plane membrane, a characteristic length can be the diameter. For any surface, a
characteristic length can be chosen as

R= Inf(Rl ’ RZ),

where R, and R, are the principal radii of curvature of the surface S.

The reader will find some geometrical properties of these domains in appendix D.

Two different models of thin fluid structures can be developed depending on the problem to
handle and the desired degree of accuracy:

(1) The first model is a one-dimensional model based on a one-dimensional
approximation. The balance equations are obtained from the equations of
section 2, where the line (or surface) density is replaced by the product of a
constant volumetric density by a cross-section area (or a height).

(2) The second model is a one-dimensional model using the averaged balance
equations. The balance equations are obtained by asymptotically reducing
the thickness of the filament or the membrane in the equations derived in
section 3.

The balance equations for both models will be derived for the fluid membrane. The corresponding
equations for the fluid filament will be given in table 1 at the end of this section.

4.2. One-dimensional Model Based on a One-dimensional Approximation
4.2.1. Mass balance

The relation between the mass per unit area p, and the density of the fluid p, can be written as
(appendix D, [D6)):
+h/2
Ps= Py f u dx?

—hj2

or by means of [30],

h2
ps=ph*=p.h (1 + Kﬁ> ~p.h,
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where the hypothesis on the thickness of the membrane given in section 4.1 has been taken into
account. Consequently, [14] and [12] become

G,
—h+div,AV=0 [40]
ot
and
G, ) .
6—th +div, AU, + div,a(V = U))* =0. [41]

An equation similar to [41] has been obtained by Zak (1979). Actually the second term of [41] is
missing in equation [1.9] of Zak’s paper.

4.2.2. Linear momentum balance
By means of the relation p, = p.h, [19] becomes

56; (hV)+ div,(hVV) — hf, — % div, T} =0, [42]
where T} = (T, a¥)a,.
We deduce from [21]:
% (AV) + div, AVU, + div, h[V(V — U,)] — hf, — % div, T} =0. [43]
Taking into account [40] and [41], [42] and [43] become
ov 1
— +gradV-V—f ——div, T¥=0 [44]
ot N
and
av |
n +grad,U,-V+grad(V—-U,)- V—f, — — div, T} =0. [45]

r

As for the mass balance, the equation given by Zak (1979) is incomplete due to the acceleration
term. Furthermore, Zak considered only the case where

-H-= Toﬂ,

where 1 is the unit metric tensor associated with the surface (S) and 7 is assumed constant.
Remark. If the fluid of the fluid sheet is inviscid, then

T,=T,U
and [44] becomes

v VV—f —— -
5 + grad,V f Y grad T, v

a,=0. [46]

4.3. One-dimensional Model Using the Averaged Balance Equations
4.3.1. Mass balance
A small parameter ¢ is defined as

—11 where R =inf(R,, R;), [47]

€=

then the terms of [29] and [34] are developed with respect to €. One keeps only the terms of order
0in e
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The averaging operator, in this case, denoted by { ) is the classical segment averaging operator:

+h/2 +h/2
fdx? J‘ fdx?

~h/2

Sfr= J:’ﬁ/z = 7

dx?
—mp2

Equation [34] thus becomes

2 oo+ ko> div, U, + U, grad, (hp,)

+ div, [ <p,(V ~ Ug)*>] + [p"(vS* ~Us.)- Ni]m

N, -a —h2
For any point Q of the segment PP’, we have:
(V-Ug)g=(V-U)h=(Vu—Uy)*=V -1,

Equation [49] can be written as

%h(l’p >+ div,(hV{p,>) + [Pp(vst ~Us,)- Ni:|+h/2 ~

N, -a, —h2

For a constant density p, one obtains:

(V. — . +hf2
£h+div,(hV)+|:p‘( s: — Us.) Ni] =

N, -a, —hp2

In the absence of phase change at the interface, [42], in section 4, is recovered:

0 .
ah +div,(hV)=0.

Taking into account the hypothesis 2/R < 1, [52] can also be written as

%h +div,(h{V)*) = 0.

4.3.2. Linear momentum balance
Taking into account the hypotheses made in section 4.1, [38] becomes

a% h<p.V)* + h{p, V)" div,U, + grad, h{p.V)*- U,

+div,[1<(p. V(V — Ug) — T) - a")"a]

[(pvv(v - US:) - T) ) Nij|+h/2
+
N, -a,

— h{p,F>* =0.

—hi2

However, at any point Q of the segment PP":
V-Up)=V-1..

If one assumes that p, is constant and if there is no external fluid, [S4] becomes

2 ROV + div, (VYY) - #lny)

+h)2 1 M2H. 6N, T+
1 div, {(J T-a* dx’) aﬂ} — h{(F) —— l:—-i-&] =0.
P Y ol Ni-ay |

=0.

[48]

[49]

(50}

[51]

[52]

(53]

[54]

(53]
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Equation [55] is transformed by means of the mass balance and leads to

0 . 1 [2H,.oN, |2
— (V) + grad, KV - (V) — — div, (h<T*)") — (F)* — — ——} =0.  [56]
at plh plh Ni— ’ a3 —h{2
As a result, [44] is recovered, where
(V> replaces V,
{F)* replaces f,
and
) 2H . N, |+ )
div,hi{T*>* + 0o [ = i] replaces div, T}
N, -a; |
Table 1. Balance equations for the thin fluid structures
First model Second model
(" Mass balance s s s s
Y p2 e RZV =0 ‘Rl - R2v-=0
61R te 6s( ) ot tr 6s( vm
Linear momentum balance s 5
FLUID S AVE+ VP (V)
FILAMENT ov av 16T o 1 @ o
i -2 =0 —{F} — —— — (R{T-z|*
0 Vo) o ' p os {F} p,.Rzas( {rh
- 12 '[ 2Hyons o
\ nRp, Jo mgom
( Mass balance o i
Z 4div.(hV) =0 ok div,(h¢VI) =0
ot ot
Linear momentum balance 5
FLUID ) — V) +grad (V)*-(V)*
MEMBRANE v | ot 1
obgrad,V-V—f— —div,T}=0 —(F)*—— div,(h<T*)")
ot s p.h
! [2HtaNt:|+“ o
ph| Ny-ay | 4

5. SOME TYPICAL APPLICATIONS

5.1. One-dimensional Equations for Single-phase Flow in Bends

One-dimensional modeling of single-phase flow in a straight pipe is based on area-averaged

equations as

derived by Delhaye (1981). This formulation could be easily extended to single-phase

flow in bends by just changing the rectilinear coordinate into the curvilinear coordinate s along
the axis of the bend. This procedure would lead to the following equations:

mass balance,

0 9,
% pr,. da + ER jfp,, V.da =0; (57
S N

e (1) -- -
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and

momentum balance,

0 0 )
T ij,. V.da +$ pr,. Vida — ”‘va, da
S

N

[}

(@) - - (3)---
d 0 -T,)-zd
+6— p a—-% (t-T,) tda
=j (T -n;)dC; [58]
- (4)---

where V, and V,, are the tangential and normal velocity components, F, is the tangential component
of the applied force F, p is the pressure and T, is the viscous stress tensor.

Actually, [57] and [58] are erroneous because they do not reflect the influence of the bend
curvature. The correct equations are obtained from [26] and [36] in section 3 and read:

mass balance,

0 i)
% jjp,.i da + % Jf p. V. da; [59]
s s

- (1) - - -

and

momentum balance (tangential projection),

ﬁjjpl, V.2 da +E J‘J\pl, Vida —ij,.F,l da
ot ds
S S

N

---(2) - - - ---(3)---
0 0
+a”‘pda—afj‘(t-1fv)'rda
v Yoy Ty 2da=| (T -ng)ddC 60
—J‘J‘pv 15 a—J‘J‘(T v) 5 a_JCT ( nZ) . [ ]
---(5)--- ---(6)--- ---(4)---

Some terms are identical in the two systems but terms (1)—(4) must be replaced by terms (1')—(4')
and two new terms (5') and (6’) appear in [59] and [60]. These new terms (5') and (6’) involve
the normal components of the velocity and of the stress tensor.
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Equations [59] and [60] must obviously be complemented by the following projection of the
momentum equation along the normal direction n to the axis of the bend:

0 5,
= \lpVidda+— {|p. Vo V.da — || p.F.A da
ot 0s
S s S
0 V? p
~ an (T,-t)da +‘Upv§da +ff§da
N s A

_‘U‘%,.(‘u’v.t)da=fn‘('ll'-nz)ldC. [e1]

In a practical case, a scale analysis of [59]-[61] should be performed to specify the order of
magnitude of the extra terms or coefficients.

5.2. Dynamic Centering of Thin Liquid Shells in Capillary Oscillations

We consider compound drops which consist of a gas domain enclosed within a thin fluid shell
immersed in an outside gas. Here the inner gas is the same as the outer one. It was observed in
many experiments that a compound drop in oscillation tends to become concentric.

The averaged equations established in section 4 can be used to study the motion of such
compound drop under the following assumptions:

o The thickness of the liquid shell is much smaller than its characteristic dimension.

o The internal flow in the liquid shell is ignored.

o The inner gas is incompressible and the external pressure is uniform.

o The liquid shell is subjected only to the effects of surface tension and of internal
and external gaseous pressures.

The inner and outer surfaces of the axisymmetric thin shell we consider are defined by their position
vectors R, and R,, respectively. The mid-surface is characterized by the spherical polar coordinate
6, R 21 (R, + R,). The velocity field for points located on the mid-surface is defined by its tangential
and normal components V, and V,,. The unknowns of this problem are the radius, the equivalent
surface density pg, V, and V,.

The mass balance equation, the momentum balance equation and the shell displacement velocity
can be obtained directly from [50] and [56] of section 4 and read:

0ps _Kdps ps av, ;
= =R R cos Y =0 +f.cosy + V,siny | —psCV,, [62]
v, KoV, cos Y Op
- 20V g SOSVOP 6
ot R 06 " psR 0 63}
v, Kov, 1
5= "rag T VH D) [64]
and
OR
V,=cosy e [65]
where
OR
tan ¢=§_56’ [66]

K=V cosy, {671
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Hz _la_V_" cos +71§ (1 +sin? ¢ )(V, sin y — V,cos )

R 60
2
—%COSZW(VnSinlII — ¥, cos dl)%(;;, [68]
XC(_)—SB 0<f<nm
sin 8
Sz ov (69]
603 0 =0 or =,
1 ., cos’y 9°R
C=§{2cos¢ + sin '/'COS'/’—f——'R—W [70]
and
. cos @
sin ¢ peewr 0<b<n
729 L ow 7
}W 0 =0 or m,

C is the curvature of the shell, P is the inner pressure, p is the mean liquid pressure within the
shell and Ap is the difference of pressures between the two sides of the shell. The inner pressure
P, p and Ap are evaluated in terms of interfacial tension, geometrical quantities and V,, V,
and p;.

The same problem was studied by Lee & Wang (1988) but their [3.11], [3.19] and [3.20] are
incorrect and should be replaced by [62], [63] and [64], respectively. The error comes from their
expressions for K and H, which are erroneous. According to Lee & Wang, K and H read:

Kw=V,cosy — V, siny {72]
and

K V : 2 62 in3
HLwéﬂ_cos¢g_,,+cosw smlp(VSsim//+Vncos¢)—Vscos w—R+V sin’ i

R R 00 R R?* 067 " R 73]

The expressions K,y and H,y for K and H should be replaced by [67] and [68] above.
The problem of the dynamic centering of thin liquid shells in capillary oscillations is currently
being revisited with the correct physical equations (Coutris 1993a).

5.3. Annular Jet Instability

We consider a hollow liquid jet formed by an annular nozzle. The liquid jet is a cylindrical liquid
sheet enclosing a gas stream. The jet breaks up downstream of the nozzle forming hollow
capsule-like liquid shells.

The averaged equations established in section 4 can also be used to study the motion of the liquid
sheet if it is assumed that:

o The liquid layer is thin and its thickness is much smaller than its characteristic
length.

e The internal flow in the sheet is ignored.

o The gas inside the sheet is incompressible.

¢ The liquid shell is subjected only to the effects of surface tension and of internal
and external gas pressures.

The radial position of the liquid sheet is described by the cylindrical coordinates z and R.
The velocity field for points on the sheet is defined by its tangential and normal components
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V, and V,. The balance equations and the definition of the shell displacement velocity can be
written:

om om oV, R,
e 4 oy I 74
o A 3 m (cosG pe V. 557 cos 6), [74]
av, ov,
—=—-A——HV,, 75
at - n [ ]
aov, dv R cosf O*R_
= -4 4+ —iP- —_— 76
o A = +HV\+m[P 20( R P cos 9)] [76]
and
OR
Vo=costf—- 77
o =cos 0 3 [77
where
tan 2%, [78]
0z
m=pgR, [79]
A=V, cos 0, (80]
av, , ,O°R . . 0°R
H=cos0<az + cos G?V,.-!-cosOsm{)?Vn , [81]
P—the pressure difference between the inside and outside of the liquid shell
and

o—the interfacial tension.

The same problem was studied by Lee & Wang (1986, 1989) but the equations proposed by these
authors are incorrect. Equations [19], [27] and [28] of Lee & Wang (1986) should be replaced by
[74], [75] and [76], respectively. The error comes from their expression for 4 and H, which are
erroneous. According to Lee & Wang, 4 and H read:

R
Aw=cosf <VX— V“6—> [82]
and
av, 02
H,y=cos -+ V, 1300829 . [83]
0z 0z*

The expressions A,y and H;y for A and H should be replaced by [80] and [81] above.
The problem of the annular jet instability is currently being revisited with the correct physical
equations (Coutris 1993b).

5.4. Dynamics of a Flame Front
In Candel & Poinsot (1990), an expression for the flame stretch ¢ is derived. With our notation,
it reads:
ds=divgw, [84]

where w is the velocity of the flame front.

If the front propagates in the normal direction at a speed S, , w is the sum of two contributions:
the local fluid velocity v and the flame speed in the normal direction S;n. As a result ¢4 can also
be written as

b5 =divgy + S, divsn. 185]
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The derivation of a balance equation for the flame area per unit mass, denoted by a;, is
straightforward with our method.
Following section 2, the mass balance equation for a flame front is

0 .
Pt divg(psw) =0, (86]
where ps is the density of the flame front. It can easily be deduced that, for a,= 1/pg:
0
Frhl + v gradsa; = a;s. (871

If the flame area per unit volume is considered, the balance equation for the flame area can be
written as

i, . 0
21 (p.a;) + divs[par(v + S n)] + an (pa;S.) = a;ds. (88]

This is another form of [43] of Candel & Poinsot (1990).

6. CONCLUSION

The mass and momentum balances for fluid structures such as lines, filaments, sheets or
membranes have been derived using original theorems of the Leibniz and Gauss type. The
demonstrations of these theorems are given in the appendices.

The consistency of the formulations has been checked and verified by looking at the asymptotic
forms of the balance equations for the three-dimensional structures.

Finally, examples were given for which the use of such balance equations is appropriate.
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APPENDIX A

Time Derivatives of Line Integrals

Let C(¢) be a moving geometrical line. We denote by U(¢) the velocity of a point on the line.
Our objective is to evaluate the derivative of the line integral 7, defined by

Iej g(M, 1) ds
AB

where AB is an arc on the line C(r) and g is a function defined on this line.
At time ¢, every point on the line is determined by
3
OM = OM(p’ t) = Z xi(pa t)ei
i=1
where p is a parameter and x; (i = 1, 2, 3) are the Cartesian coordinates of M with respect to the
basis {e;}.
At time ¢t =0, let g, (i =1, 2, 3) denote the coordinates of the corresponding point M, whose
parameter is p,:

3
OM, = OM(p,,0) = Z a,(py)e;,

i=1

where
P =p(po,1).
The arc length is denoted by s for the curve C(r) and s, for the curve C,, and is given by
s =s(p, 1) =s[p(po, 1), 1],
with
So = s(py, 0).
At time ¢, the element of arc ds is given by

0Os
ds = 5 dp.

The line integral I can be written as

I=f gM, 1) ds =J g(M,t)ﬁdp.
AB AB op

By introducing the initial curve C,, we obtain:

Os @
I=J g[M(Mmt)’t]é—‘ldea
AgBy

p Opy
hence
1 =J G(My, 1) dp,
AoBy
with
G(M,, t)=g[M(M,, 1), 1]
and

os dp Os

Aa— 2 =7
Op op, 0p,

If>
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Therefore,

dr d d
£.2 =L G
dr - dr Ju® =3 J‘Ao.,o d

and

ds 0
?t = J‘Aono 5; (G4)dp,

oG dA
_.[Aonﬁ’?/1 dp°+IMmGa_'dp°'

The first term on the LHS can be written as

AoB, Ot ag df

The second term on the LHS requires the calculation of di/dt. We have:
(A _Laf(asy
at 20t | \dp,
19 [ & [ox\?
-35 5 (5]

where U(¢) is the velocity of a point on the line C(¢). The components U, are such that
Ui(x;, 1) = Ui[s(p, 1), 1]
= Ui{s[p(pOa t), t]}

Therefore,
oU_au s
0po ~ s opy
and
a__U.aOM_a_ll.GOM 6_s 2
opy Opy s 0s \dp,)’
hence
A du
'5; = }ut . a

If we introduce this result in the line integral, we obtain:

J Gde():J. Gf'a—'qldpo
roBy Ot romy s

ou
= Aag‘t '—aFdS.

MF 19/4—G
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d dg U
O Lag ds = LB (a—’ + gt E) ds,

de g %
ETRRETIY

As a result, we have finally:

where

7 - U

The time derivative of a line integral can thus be written as

d dg Og ou

— ds = —=+—=t-U -—— )ds.
ar J &Y L.,(az Tt tE as> :

Two particular cases of the time derivative of a line integral can now be given:

Case 1
Let us consider a point M attached to the line C(t). Consequently, we have:

p =p(py)-

An analogous proof leads to the following relation:

d og Og dUc
= = h: - . ds,
a ABg ds Ln(ﬁt +6sr Uqs+gr 35 s

where U is defined by

Case 2

(A1]

[A2]

The line considered now is a material line €(t). The proof is the same as in the general case,

the velocity V of a fluid particle has to be substituted for U:

d og Og v
— ds = = +=1 — .
i ABg s LB(al +asr V+gr as)ds

APPENDIX B

Differential Operators on a Line or on a Surface

B1. The line (see figure Bl)
¢ Divergence of a vector B,

0B
divB=1 —.
iv, T P
Divergence of a tensor T,
oT
div, T=1 - —.
iv, T p»
o Gradient of a scalar field f,
0
grad /= 4

a‘t.

(A3]
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(T)

M(s)

Figure Bl. A line (I'). Figure B2. A surface (S).

Gradient of a vector B,

B
B=—r.
grad, F

B2. The surface (see figure B2)
¢ Divergence of a vector B,
B = B*a,+ B’a,
and
div,B = B}, — b3 B’,

where the subscript |« stands for the covariant derivative with respect to x* and
bi=1/R, + 1/R,, with R, and R, as the principal radii of curvature of the surface S. Divergence
of a tensor T,

T =T*a,a;+ T™a,a, + T aa,+ T a;a,
and
div, T = (T — b3T% — b T™a, + (T}§ + b,, T" — b, T™)a;.
o Gradient of a scalar field £,
grad, f = a*fa,.
Gradient of a vector B,

grad, B =[(Bj; — b3 B%a, + (B} + b,; B")a,]a".

APPENDIX C

The Leibniz and Gauss Theorems for Surfaces and Segments
The derivation of equations averaged over an area or a segment requires appropriate limiting
forms of the Leibniz and Gauss theorems. Starting in each case from three-dimensional relations,
formulas are obtained involving only quantities connected to the cross section or to the segment.
We will suppose that the different quantities introduced are smooth enough.

C1. The Leibniz and Gauss theorems for surfaces

Let us consider a region surrounding a curve (I') such that, at any point M on the curve, we
associate a circular section (S) of center M and radius R(s). We consider the volume V generated
by the surface (§) when M describes the curve (I') between M, and M, (figure Cl). The volume
V is thus limited by two cross sections S, and S, and the lateral surface (Z).

C1.1. Gauss theorem. The Gauss theorem applied to volume V leads to

[farnse [ nto [Jwn o [ane -

5 S,
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(r)

Figure C1. A thin filament. Figure C2. A thin membrane.

where ny is the unit vector normal to (S) directed away from the volume V and n, (x = 1, 2) is the
unit vector normal to (S,) directed away from the volume V. Each term on the RHS of [C]] is
computed successively by

jjjdiv Bdv =J { J‘J‘ div BA da} ds, [C2]
MM,

SM.»

where A =1 — x/4, and

R OR
B n;da = B-{[{l——cos¢ |l,——1 |dl}ds.
L : JM.M: an) [( R qo) 0s :l }

If n- denotes the unit vector normal to the curve (C) located in the cross-section plane:

R R
B-n, —B,(l —écosgo)—B,g
ng-n. 1_Rcosqo ’
R
where
B=B1+ B,l,+ B.t.
Consequently,
B .
ﬂB-nzda=J “ nzldl}ds [C3]
MM, (Jomp Dz N
z
and

5

;ij3~nada=fMM%(J]dea)ds. [C4]
Sx TR s

The combination of the different terms leads to a relation which holds for each part M; M, of the
line (I"). An original particular form of the Gauss theorem for the surfaces is then deduced:

. @ B : nz
Jf divBA da = % ( fj Bt da) + J‘C(MJ) o ncll dl, [C5]
S(M.rn) S(M.0)

Thus, one obtains:
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where n; denotes the unit vector normal to the surface (Z), n. is the unit vector normal to the
boundary C(M, 1) of S(M, t) located in the cross-sectional plane; n; and n. are directed away from
the volume V.

C1.2. Leibniz theorem. The Leibniz theorem applied to a volume ¥"(M,, M,, ¢) limited by two
cross sections (S,;) and (S,) associated to two fixed values p, and p, of a parameter p, leads to

gt “l[fdv = “J%fdv + jjf"}: ‘ngda + Y J fv,n, da; (C6]
b & a=12 v

v - B is the speed of displacement of the lateral surface (X) and v, - n, is the speed of displacement
of the surface (S,) (x = 1, 2). With the method used above, one obtains an original particular form
of the Leibniz theorem for a surface:

-ijlda+< U,~> JJﬂda+(Ur ‘t) ff/lda

S(M.1) SM.0) SM.0)
H U gasl JJf(UJ-t)da+J AL ) [CT]
Os cmn Mg 0c
SM.) S(M.0)

where U, is the velocity of a point attached to the line (I'), U, - t is the speed of displacement of
the section (S) and Us - n; is the speed of displacement of the lateral surface (Z).

C2. The Leibniz and Gauss theorems for segments

The segment considered, PP’ is normal to the surface (S) at M (figure C2). The associated volume
is limited by the surface S,, S,, S, and S,, generated by the normals to (S) intersecting the
coordinates curves C,, C,, C,, and C,, corresponding, respectively, to x', x2, x'+ Ax' and
x*+ Ax? and by the surfaces (S, ) and (S_) defined by x;=h/2 and x;= —h/2.

C2.1. Gauss theorem. The Gauss theorem applied to volume V leads to

”_[di""dv=a§l‘2UB-n,da+a;2UB mdﬁﬂs n da+”3 n_da. [C8]

SA:I
The different vectors introduced are unit vectors normal to the correspondmg surfaces (S;) and
directed away from volume V.
As developed in section Cl1.1, each term on the RHS of [C8] is written as

'[ ”div Bdv = J J { J ™ i By de} da. [C9]
—hj2

By means of [D6] in appendix D:

[[orie fornoe o foonen

S, 5

Consequently, one obtains:

JfB n, da+£IB n_ da—f [B- (A, AA2)]+%§\/;

If N; denotes the unit vector normal to (S_) at P and N, is the unit vector normal to (S, ) at
P’ outwardly directed:

B-N -N
[B-(AIAAz)l_‘,=_h/z=( Puﬁ) denoted by DEF /o
N; - a, P Np -2,
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By - N; B, Np
B- B-n da = o _
J:f n+da+Jf n- o JJ[NP"aJ e Np - a, po | da ol
s s

+

According to Naghdi (1963), one has

+h/2
JJ‘B-na da =j v, {j‘ uB“dx3} ds,
a, —h2

Sy

then

where v, is the unit vector normal to S, at any point pertaining to C and outwardly directed. As
a result, one obtains:

+h2
Y ffB-nada+ Y JJB‘nAada=JJdivs(J uB‘dx3>da,
a=12 S a=12 oy s —hy2

B,z (B g%)a, [C11]

where

and
2

div,B= B —2HB* with B= ) B%a,+ B’a,,
x=]
where g* is defined as in appendix D and the subscript | stands for the covariant differentiation
with respect to a,; and H is the mean curvature of the surface (S).
The combination of the different terms leads to a relation which holds for each part (S) of the
surface. A particular form of the Gauss theorem for segments is then deduced:

+hi2 +h)2 . .

. . peB - Np  ppB-Np

divBu dx’ = dnvxf uB dx+ - . [C12]
f —hi2 —hj2 Np - a; N; - a,

In the following, the last two terms will be written as

l‘tB . N+ +h/2
l: N, -a; ]mz'
C2.2. Leibniz theorem. The Leibniz theorem applied to the volume ¥ (x!, x?, Ax', Ax?, t) with
fixed x', x%, Ax' and Ax? leads to

2 ([frao=[[[ZLar [[rv ma s

where V, - n, is the speed of displacement of the surface &/, the boundary of ¥".
With the same method as in section C2.1 an original particular form of the Leibniz theorem for
the segments is derived:

o [+h2 +h/2 +h/2
- Su dx® +div, U, f uf dx’ + U, - grad, <f u dx3>
at —h/2 —-h2 —~h/2
+h/2 a . +hi2 U . N +h/2
=J yE[dx3+dlvs(J\ ny,:,dx3>+[uf—Ns—i_——i—j| , [C14]
—h2 t —h2 + 8 |

where U, is the speed of the points on surface (S), Uy, =(Us - gYa,, Us, "N, is the speed of
displacement of the interface (S, ), Us, is the speed of a point located on the interface (S, ), N,
is the unit vector normal to the interface outwardly directed and
2
div,V="V2—-2HV® with V=73 Va,+ Va,.
i

a=
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C3. Generalization

The limiting forms of Gauss’s theorem can be generalized for tensors. Only the results will be
given here.
For a surface:

0 T:n
divTida== || T 'Ada+j Eidl,
jj 0s J:[ 8 co Nz " Ne [C15]

S(s) S(s)

where g' is defined by [D2].
For a segment:

+h{2 +h{2 ‘u’ . N +h{2
j divTp dx®= divs(J w(T - g% dea,,> + [u i] [C16]

~h2 —hj2 N, -ay|_,p

Similarly, the limiting forms of the Leibniz theorem can be established for a vector:

F) oU; 0
a”mda+( = -1:> ﬂmdaﬂur-c)aﬂmda

S(s.1) S(s.0) Sts.1)
B .
=”§_,1da+ﬂn(us-z)da+J Bz " g [C17]
ot sy Dp B¢
S(s.1) S(s.1)

and

a +hj2 +hj2 +h/2
— f Bu dx® + div, Usf Bu dx’ + grads<f Bu dx’) U,

ot J_mn —h2 -h2

+h2 B e U - 072
=j —u dx3+d1v,j BU;, u dx3+|:uB—s—*—n£:I . [C18]
_wp Of -2 7 D,y |_up

APPENDIX D

Curves and Surfaces
D1. Space curves

Let (I') be a space curve (figure D1). The coordinates of any point M on this curve are functions
of a single parameter. The arc length s is taken as the parameter along the curve. (M; 7, n, b) denotes
the Frenet-Serret frame. The Frenet formula can be written as

dr n dn t b db_n

ds # ds R I ds T’
where 1/ is the curvature of the curve and 1/ is the torsion.

Let us consider a region surrounding the curve (I') such that, at any point M on the curve, we
associate a circular section (S) of center M and radius R(s) smaller than the radius of curvature
R of (I'). The volume generated by the surface (S) is now considered when M describes the curve
(I'). Let (Z) be the boundary surface (figure D2). The cross section (S) is referred to Cartesian
coordinates or polar coordinates with respect to (M; n, b):

MP =xn+ yb=r cos pn+r sin ¢b.

Let (s, x,y) or (s, r, ¢) be the curvilinear coordinate systems for this domain (Aris 1962).
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(T

(1)

Figure DI. A space curve. Figure D2. Volume generated by surface (S).

The local base vectors associated to (s, x, y) are defined by

- Za—Zp)
g,—/lt+g.n jb,
=n’
& ) \ [DI]
g:=D,
x
A=1——.
R J
The reciprocal basis denoted by (g', g%, g°) is defined by
l_l 1
g —},1,
2 y
g=-_oT+n, > [D2]
Yy
3. 4.2
g +g_/11.' +b.)

Thus, an element of volume dV is given by

dV =(g:, 8, 8)dsdx dy = \/é ds dx dy,
where

X
Ve=1-2; [D3]

g being the determinant of the metric tensors (g;;).
In what follows, all Latin indices take the values 1, 2, 3 and Greek indices the values 1, 2.

D2. Surfaces in space

Let (S) be a space surface. A curvilinear coordinate system (x', x?) is defined for the surface.
The local base vectors associated to (S) at point M are (a,, a,, 8,). We have the relations:

oM oM
a :_QM' a ;——EXTA(?_XZ N
*Tox*” T |oM M|

oxt N ox?

a,g is the metric tensor (Aris 1962) and a is the determinant of the surface metric tensor a,;.
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A region surrounding the surface (S) is defined as follows. For every point M located on (S),
the normal to (S) and two points P and P’ lying on this normal are associated such that:
MP’ = MP = -’21- a,,

where 4 depends on x' and x? and A/2 is supposed to remain smaller than the smallest principal
radius of curvature of the surface.

The domain V in consideration, is the one generated by PP’ when M moves on the surface. The
position vector of every point Q of this domain ¥ can be located by

h
0Q =OM + xa,, |x* SE;

(x', x?, x% is a curvilinear coordinate system for V. The local basis at Q (g,, g, &;) is defined by

=a +x3—a—iﬁ
gl- | axp
da [D4]
= 3233
g2 a2+x ax2’
g;=1a;.

The second fundamental form of the surface (S) is given by (Naghdi 1963):
8= Halol here wi=01—x%7. [D5]
g = as,

The reciprocal base vectors of the space coordinates are (g', g%, g°). An element of volume dV can
be written as

dV =(g,, 8, &) dx' dx?dx’ = /g dx'dx?dx?,
dV = p/a dx' dxdx?, [D6]

where g is the determinant of the metric tensor g;;, a is the determinant of the metric tensor a,,
u is the determinant of elements u, u = 1 — 2Hx* + K(x*)’, H is the mean curvature of the surface,
u =3b%, K is the Gaussian curvature, K = b3b| — b?b} and \/; dx'dx? is an element of area on
the surface (S).



