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Abstract--Fluid structures can be classified into two categories: fluid filaments and fluid membranes. 
If the cross section of a fluid filament vanishes, the fluid filament is called a fluid line, whereas if the 
thickness of a fluid membrane vanishes, the fluid membrane is called a fluid sheet. In this paper, the local 
instantaneous balance equations are derived for a line and a sheet of fluid moving in a three-dimensional 
geometrical space. For a filament, the balance equations are obtained by using quantities averaged over 
the cross section of the filament. For a membrane, the balance equations are obtained by using quantities 
averaged over the height of the membrane. It is shown that the local and averaged formulations are 
consistent. All these balance equations have been rigorously derived by applying original mathematical 
theorems given in the appendices to the paper. Such balance equations can be used to model single-phase 
flow in bends or coils, the dynamic centering of thin liquid shells in capillary oscillations and the instability 
of an annular jet. 
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1. I N T R O D U C T I O N  

The instability of a thin liquid jet can be studied by using the mass and momentum balance 
equations averaged over the cross section of the jet (Meier et al. 1992). The dynamics of a flame 
front has been modeled by considering the flame front as a surface moving in a three- 
dimensional space (Candel & Poinsot 1990). These two examples among others show that the 
dynamics of fluid structures such as filaments or membranes is of interest in many different fields 
of engineering. 

Fluid structures can be classified into two categories: fluid filaments and fluid membranes. 
If the cross section of a fluid filament vanishes, the fluid filament will be called a fluid line, 
whereas if the thickness of a fluid membrane vanishes, the fluid membrane will be called a fluid 
sheet. 

The derivation of the balance equations for the above-defined fluid structures is not a trivial 
problem. As will be seen in the following, several authors have tried to derive some of these balance 
equations but their derivations lead to incomplete equations (Zak 1979) or deal only with the mass 
balance for a sheet (Candel & Poinsot 1990). 

It is the purpose of this paper to establish the mass and momentum balance equations rigorously. 
In section 2, one- and two-dimensional fluid structures, namely lines and sheets, are considered. 
Section 3 deals with the corresponding three-dimensional structures: filaments and membranes. 
In section 4, two types of modeling are proposed for thin structures such as thin filaments and thin 
membranes. The first one is a one-dimensional model based on a one-dimensional approximation. 
The balance equations are obtained from the equations of section 2, where the line (or surface) 
density is replaced by the product of a constant volumetric density by a cross-section area (or a 
height). In the second model, the equations are obtained by asymptotically reducing the thickness 
of the filament or the membrane in the equations derived in section 3. We will then show that 
the two models are completely equivalent. Finally, section 5 deals with some applications of the 
balance equations established in sections 2-4: one-dimensional modeling of single-phase flow in 
bends or coils, dynamic centering of thin liquid shells in capillary oscillations and instability of an 
annular jet. 
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2. THE FLUID LINE AND THE FLUID SHEET 

2. I. Definitions 

2.1.1. The fluid line 

A fluid line (figure 1) is a moving material line represented in space by a curve (Ft). Every material 
point M in the fluid line is determined by 

OM = rip(t), t], [1] 

where p is a parameter. The density of the line (mass per unit length) will be denoted by Pt and 
the unit tangent vector of the curve (F,) by ~. 

2.1.2. The fluid sheet 

A fluid sheet (figure 2) is a moving material surface represented in space by a surface (St). 
A curvilinear coordinate system (x ', x 2) is chosen on the surface. Every material point on the fluid 
sheet is determined by 

OM = r[x ~(t), x2(t), t]. [2] 

The density of the sheet (mass per unit area) will be denoted by p~. 

2.2. Mass Balance 

2.2.1. The fluid line 

The mass balance for a material line of finite length AB reads (figure 3): 

d L B Pt ds = 0, [31 

where ds is the elementary arc length. 
Equation [3] can be transformed by using an original transport theorem for line integrals ([A3] 

in appendix A) into the following form: 

+ V • ~-~-s + p,-~--s • "~ d s = 0 ,  [4] 

where V denotes the velocity of a material point of the fluid line. Therefore, it can be deduced 
that 

8pl 8 
a t  + ~ ~ (p ,v )  = 0. [51 

In order to compare our equations with similar equations proposed previously, another form 
of this relation can be given by introducing the velocity of a geometrical point attached to the 
line Ur : 

C r) U r ~  -~ with fixedp. [61 

Equation [5] now reads: 

8P/ ~ s  t 
Ot  + • • Ur 

OUt, 8 
+ p,~. ~ + ~ [p,(v - u , - ) .  ~] = o.  [71 

2.2.2. The fluid sheet 

We consider a material surface (5 e) (figure 4), defined as a part of the surface (St) limited by 
a curve (C). The mass balance reads: 

d L dt , p 'da  =0 .  [8] 
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Figure 2. The fluid sheet. 

Equation [8] is transformed by means of the Reynolds transport theorem for a material surface 
(Aris 1962) into the following form: 

\ Ot + V .  grad ,  Ps + P, divs  V d a  = O, [9] 

where the vector V denotes the velocity of a material point of the fluid sheet, divs denotes the surface 
divergence and grads the surface gradient defined in appendix B. 

It can then be deduced that 

Ops 
0-7 + V .  grads Ps + Ps divs V = O. [10] 

As the velocity Us of a point attached to the fluid sheet is defined by 

equation [10] now reads: 

Ops 

Us.. IL L/,~r~ with x' and x 2 fixed, [11] -\ot / 

- -  + Us" grads Ps + P, divsUs + divs p,(V - Us)* = O, 
Ot 

[12] 

where ( V -  Us)* is the projection of the vector ( V -  Us) on the tangential plane. 
Remark. Equations [5] and [10] can be put into the same form taking into account the definition 

of the operator div/(appendix B): 

and 

apl 
O---t- + div~(p~V) = 0 [13] 

Ops 
0--7 + div,(p,V) = O. [14] 

2.3. Momentum Balance 

The method used to establish the equations is the same as in section 2.2, and only the final results 
are given. 

MF 19/4~F 
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Figure 3. Material line of finite length. 
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Figure 4. Material surface. 

2.3.1. The fluid line 
The linear momentum balance reads: 

d fA p,Vds fA ptf, d s + T ( B ) - T ( A ) ,  [15] 
dt a a 

where T is the force exerted on a point o f  the fluid line by the fluid located on the • side and f~ 
is the external force per unit length. 

It can then be deduced that 

a 8 / S V \  8T 
at p,V + (V" ~) ~ss (p,V) + p,V ~, ) ~  " --~-s - p`f; - ~ = 0 [16] 

or, by introducing the speed Ur,  

8tP,  V + ( U r ' z )  p t V + p t V  ~" as J as(PtV[(V-Ur) '~])-Ptf ' --~ss =0" [17] 

2.3.2. The fluid sheet 
The linear momentum balance reads: 

dt psV da = -0- t • v dC + P~L da, [18] 

where v is the normal unit vector to C located in the tangential plane to 6e and outwardly directed, 
qr~. v dC is the elementary force exerted on an arc dC of  curve (C) by the fluid located on the v 
side and fs is the external force per unit area. Therefore, 

a 
~ p , V  + div~.(p~VV) - P~fs - div, T* = 0, [191 

where 

T~'  _= ( T  / • a~)a~. [20] 

In this relation, the vectors a,~ (fl = 1, 2) are the unit vectors of  the local basis of  the surface. 
I f  the speed Us is introduced, [19] becomes: 

a 
psV + div s ps(VUs) + div~ ps[V(V - U~.)] - p~f~ - div~ T* = 0. [21] 

Remark. For  the two fluid structures studied above, the analogous expressions for the forces 
exerted by the external parts of  the fluid line and the fluid sheet are, respectively: 

• fluid line, T p . x  ( P - A o r B ) ;  

and 

• fluid sheet, 71 I • v dC. 

The components  of  the tensors Tp and -0-~ dC have the dimension of a force. 
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Figure 5. The fluid filament. Figure 6. The fluid membrane. 

Generally, the force Te" • is not tangent to the c u r v e  ( F  t) and the elementary force Tt" v dC is 
not in the tangential plane to the surface (St). We will say that the fluid line is made up of an inviscid 
fluid if T e =  TeU, (i.e. T e ' x  = Tvr) and that the fluid sheet is made up of an inviscid fluid if 
Tt = TtU (i.e. Tt. v dC = Try dC), where U is the unit tensor. 

3. T H E  F L U I D  F I L A M E N T  A N D  T H E  F L U I D  S H E E T  

3.1. Definitions 

3. I. 1. The fluid filament 

The fluid filament is the three-dimensional fluid structure associated with the fluid line and is 
defined in the following way (figure 5). We associate to any point of a space curve (F) a plane, 
circular'{" section (S) of center M, radius R and whose plane is normal to (F). The radius R depends 
on the arc length s along (F) and on the time t; we suppose that R is smaller than the radius of 
curvature ~ of (F). 

The volume generated by (S) when M describes (F) constitutes the fluidfilament. 
(C) is the circumference of radius R whose center is M and which is located in the section 

plane. (E) is the lateral surface of the tube defined above and will be called the interface of the 
filament. 

3.1.2. The fluid membrane 

The fluid membrane (figure 6) is the three-dimensional fluid structure associated with the fluid 
sheet and is limited by two surfaces, (S+) and (S_), symmetrically located with respect to a surface 
(S). At any point M of surface (S), one associates a segment PP', normal to (S) and of length h. 
The two points P and P' are symmetrically located with respect to M and the length h depends 
on the time t and M. In the following, a part (6 e) of the surface (S), limited by the closed curve 
(C) is considered. 

The method used to establish the equations of mass balance and linear momentum balance is 
the same as for the filament and the membrane. As a result, we will derive in detail only the mass 
balance for the fluid filament. It is assumed, in the following, that the different quantities are 
sufficiently smooth. 

3.2.1. The fluid Jilament 

We start with the local equation 

3.2. Mass Balance 

~-~ p,, + div p~,V = O, [22] 

tFor  a noncircular surface, the method used leads to analogous results. 
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where p,, is the density of  the fluid constituting the filament. We average the local equations over 
the cross-section area S(M, t), in the manner suggested in appendix C. We thus write 

ff ;; ~p, ,2  da + divp,,V2da =0 ,  

S(M,t) S(M,t) 

where 

X 
2 _= 1 - ~ ; [23] 

(x, y)  denote the coordinates of a point located in the cross section whose local basis is (M; n, b) 
and ~ is the radius of curvature of (F). The cross section S(M, t) is obtained for a fixed value 
of p. By using the Leibniz and Gauss theorems established in appendix C ([C5] and [C7]), the 
following equation is obtained: 

p,.2 da + \--~s " ~ p,.2 da + (Ur" ~) Os p,.2 da 

S(M,t) S(M,t) S(M,t) 

O f f  fc  ( V - U x ) ' n x  +-~s p,.(V - Us)" t d a  + p,. 2 dl = 0, [24] 
(Md) n x  " n c  

S(M,t) 

where Ur is the speed of a point attached to the geometrical line (F), U, .~ is the speed of 
displacement of the cross section (S), • is the unit tangent vector to the curve (Ft), Uz, nz is the 
speed of  displacement of the interface (Y), nz is the unit vector normal to the interface (Z), 
outwardly directed from the fluid filament, and nc is the unit vector normal to (C) located in the 
cross-section plane. 

Taking into account the definition of an averaged quantity over the section (S), 

f f f2 da 
( f  ) ~ StM,,) 

f 2da 
S(M,t) 

[24] can be written as 

0 ~ OUr. 0 
ot nR (P") + r~R2(P")~ "--~-s + (ur .r)~  (~R~(p,,}) 

f f f2 da 
__ S(M,t) 

/ t R  2 ' 
[251 

f + ~s (rcR2(p"(V - U,.)" gl],) + .)C(M,,~ 

where g' is defined by the relation 

g,~_ 
2" 

In the absence of phase change at the interface we have 

( V  - Uz)" nz = 0,  

and the area-averaged mass balance equation now reads: 

• OUr 
L ~R2(p"} + ~R2(p"]r¢ Ot --~-s + (Ur '~ )  ( ~ R 2 ( p " } )  

(V - U~)- n~ 
p~ 2 d / = O ,  

n~r • n C 

0 
+ ~ (~R2(p,,(V -- U~.)- g'}) = O. 

[261 

[27] 

[28] 
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3.2.2. The fluid membrane 

Starting from the local equation 

0 
Ot p" + div p,.V = 0, 

we average it over the segment PP'. We then transform this averaged equation by means of the 
Leibniz theorem, [C12], and the Gauss theorem, [C14], and thus deduce the segment-averaged 
equation for the mass balance: 

(~f+h/2 f+h/2 f+h/2 
--  #p,, dx 3 .+ divs Us /~p,, d x  3 + U s • g r a d s  #p,, dx3 
¢~t J-h~2 J-h~2 d-h~2 

where 

+div,[| p , . p ( V - U z , i ) d x  3 + #p,. ( v - U s ± ) ' N ±  
+hi2 

= 0, [291 

p ~-- 1 -- 2Hx 3 + K ( X 3 )  2 [301 

with 

x 3 = M Q .  a3 [31] 

for every point Q of  the segment PP'. H is the mean curvature, K is the Gauss curvature and 
aa is the unit vector normal to the surface (S); Us is the speed of a point attached to the 
surface (S), U~ N is the velocity defined by [CII] in appendix C, Us± 'N± is the speed of 
displacement of the interface (S±) and N± is the unit vector normal to the interface outwardly 
directed. 

Taking into account the definition of an averaged quantity over the segment PP', 

[" +h/2 
| f #  dx  3 

^ d - h / 2  
< f )  = ---(g~- - -  

/ ~t d x  3 
d - h / 2  

[321 

with 

h ,  ~ ~ +h/2 
.) -h/2 

the averaged equation can be written as 

# d x 3 = h  I + K  , [33] 

h <p~,) + h*(p~, >divsU s + U~. grad~(h*<p,, >) 

(Vs± - Us±)" N+]  +h/2 
= O. [341 +d ivs [h* (p , , (V-U: , ) ) ]+  #p, .  -~7~33 .j-h/: 

In the absence of  phase change at the interface, the segment-averaged equation for the mass balance 
can be written as 

O 
O~ h*(p,. ) + h* (p~,)divsU s + Us" grads h*(p~,) + div s(h* (p,.(V - Uz,~ )))  = 0. [351 
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3.3. Linear Momentum Balance 

3.3. L The fluid filament 

Starting with the local equation of  linear momentum, the averaged equation over the section (S) 
for the momentum balance is found to be 

~t OUr O gR2(p"V) 4- 7cRZ(p"V)'c " ~ Z  4" (U r " v ) ~  (uR2(p,,V)) 

O 
+ ~snR2(,(p,,V(V - Ur) -- -0-). g'} -- uR2,[p,,F} 

fcLo,,V(V- u~) T]. + - nz 2 dl = O, [36] 
nz - nc  

where F is the external force per unit of  mass and 1- is the stress tensor. 
The mass and momentum balances at the interface (2;), when there is no external fluid present, 

l ead  to 

( V  - U z )  • nz = 0 

a n d  

T • nz = 2Hxanz,  

where a is the surface tension and Hz is the mean curvature of  the interface (2;). The averaged 
e q u a t i o n  then becomes 

OUr O 
O_Ot nR2(p"V) + ~R2(p"V)~ "--~-s + (Ur" ~)~ (~R2(p, VD 

+ d_ 7zR2((p,.V(V _ Ur) _ ~)" g,) _ r~R2(p,.F) _ 2 f Hzanz 2 dl = 0. [37] 
os 3c n z  • n c  

3.3.2. The fluid membrane 

We start with the local equation of linear momentum. Applying the theorems of Leibniz 
and Gauss ([C16] and [C18]), we obtain the equation averaged over a segment by means of 
definition [32]: 

0 
Ot h*<p,.V> + h*<p,.V>div, U, + grads(h*<p,.V>) • U, 

+ div,  [h * <(p,, V (V  - U~)  - ~-).  g'> a,]  

+ [l/Lot V(V - Us+ ) - "~] " N + ]  *h/2 
- - - h * < p , , V >  = 0. [38] 

S~ "~3 J-h/2 

In  [38] ap (p = I, 2) denote the base vectors of  the local basis of  the surface (S) (a~, a2, a3) 
and (gl, g2, g3) is the local basis of  the space associated with the curvilinear coordinates system x ~, 
x 3. The mass and momentum balances at the interface (sz), if there is no external fluid present, 
l ead  to 

( V  - Us_+)" N ±  = 0 

a n d  

T ' N ± = 2 H ± ~ N ± ,  
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where H~ denotes the mean curvature of the interface S±. The averaged equation can then be 
written as 

a 
-~th*<p,,V> + (divs Us)h*<p,.V> +grad,  h*<p,.V> . U~ 

+ d i v ' [ h * < ( P " V ( V - U z ) - T ) ' g a > a a ] - h * < P ' F >  [_ N+:a-- 3 /z =0 .  [39] 
_l - h/2 

4. THE THIN F I L A M E N T  AND THE THIN MEMBRANE 

4.1. Introduction 

We consider now a thin filament or a thin membrane. The filament, as in section 3, is built on 
a curve (F,) and is generated by a disk of radius R(s, t) normal to F t. The diameter of the cross 
section remains much smaller than a characteristic length of the line (F t). For a rectilinear filament, 
a characteristic length can be the length of  the filament. For a curvilinear filament, a characteristic 
length can be chosen as 

~ m i n  = inf(~, ~ ) ,  

where 1/~ is the curvature and 1/3- is the torsion. Similarly, the membrane is built on a surface 
(S) and is generated by segments orthogonal to the surface S, symmetric with respect to (S). The 
half-thickness of the membrane remains smaller than a characteristic length of the surface S. 

For a plane membrane, a characteristic length can be the diameter. For any surface, a 
characteristic length can be chosen as 

R = inf(Ri, R2), 

where RI and R2 are the principal radii of curvature of the surface S. 
The reader will find some geometrical properties of these domains in appendix D. 
Two different models of thin fluid structures can be developed depending on the problem to 

handle and the desired degree of accuracy: 

(1) The first model is a one-dimensional model based on a one-dimensional 
approximation. The balance equations are obtained from the equations of 
section 2, where the line (or surface) density is replaced by the product of a 
constant volumetric density by a cross-section area (or a height). 

(2) The second model is a one-dimensional model using the averaged balance 
equations. The balance equations are obtained by asymptotically reducing 
the thickness of the filament or the membrane in the equations derived in 
section 3. 

The balance equations for both models will be derived for the fluid membrane. The corresponding 
equations for the fluid filament will be given in table 1 at the end of this section. 

4.2. One-dimensional Model Based on a One-dimensional Approximation 

4.2. I. Mass balance 

The relation between the mass per unit area Ps and the density of the fluid p,, can be written as 
(appendix D, [D6]): 

~ + h/2 
Ps = P~' J -|h/2 /~ d x 3  

or by means of [30], 

p~ = p,,h* = p,,h 1 + K ~- p,,h, 
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where the hypothesis on the thickness of  the membrane given in section 4.1 has been taken into 
account. Consequently, [14] and [12] become 

0 
h + div s h V = 0 [40] 

and 

a 
h + div, bUs + div, h(V - U,)* = 0. [41] 

An equation similar to [41] has been obtained by Zak (1979). Actually the second term of  [41] is 
missing in equation [1.9] of  Zak's paper. 

4.2.2. Linear momentum balance 
By means of  the relation Ps = p,.h, [19] becomes 

c9 1 , 
(hV) + divs(hVV) - hf, - - -  div, Tt = 0, [42] 

Pr 

where T* -- (Tt" aP)aa. 

We deduce from [21]: 

t~ (hV) + div, hVUs + divs h[V(V - Us)] - hf, - 1 div, T* = 0. [43] 
t3t p,. 

Taking into account [40] and [41], [42] and [43] become 

c~V 1 
c~t + g r a d ,  V • V - f, - ~ div, T* = 0 [44] 

and 

OV 1 
a--t + grad, U,- V + grad,(V - Us)" V - f~ - ~ divs T~* = 0. [45] 

As for the mass balance, the equation given by Zak (1979) is incomplete due to the acceleration 
term. Furthermore, Zak considered only the case where 

T =  T0~, 

where ~ is the unit metric tensor associated with the surface (S) and To is assumed constant. 
Remark. If  the fluid of  the fluid sheet is inviscid, then 

Tl= Till3 

and [44] becomes 

OV ~ 2HTt 
t3--t- + grads V" V - fs - grad, Tt - ~ a3 = 0. [46] 

4.3. One-dimensional Model Using the Averaged Balance Equations 
4.3.1. Mass balance 

A small parameter E is defined as 

h 
E - - ~  where R = inf(Rj, R2), [47] 

then the terms of  [29] and [34] are developed with respect to E. One keeps only the terms of  order 
0 i n E .  
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The averaging operator, in this case, denoted by ( f ) "  is the classical segment averaging operator: 

(* + hi2 [* + hi2 

I : x,j 
( f ). = d-h/____L__2 - = -h&_ [48] 

Equation [34] thus becomes 

-~ h (p,, )" + h (p,, )" div s Us + Us" grads (h (p, )') 

-- FP"(Vs±-Us±)'N+I+h/2- = O. [49] 
+ divs[h(p..(V U~)* ) ' ]  + L i~-: ~ j , , ~  

For any point Q of the segment PP', we have: 

( v  - u ~ ) ~  = ( v  - u ~ ) *  = ( v M  - u M ) *  = v - u ,  

Equation [49] can be written as 

~ h  ~P~'(Vs+ - Us+)" N+]  +h/2 
= 0. [50] Ot (P") '+divs(hV(p") ' )+ L ~q--+_Ta 3 j-h/2 

For a constant density p, one obtains: 

a h +div,(hV)+FP,(Vs±_--Us+_)'N±l+h/2 = o .  [51]  
d t  1_ N+ " a 3 / - / , / 2  

In the absence of phase change at the interface, [42], in section 4, is recovered: 

h + div,(hV) = 0. [52] 

Taking into account the hypothesis h/R ,~ 1, [52] can also be written as 

d 
0t h + divs(h(V)') = 0. [53] 

4.3.2. Linear momentum balance 
Taking into account the hypotheses made in section 4.1, [38] becomes 

d 
h (p,.V)" + h (p,.V)" divsU~ + grad~ h (p, V)" • U, 

+ div,[h ((p,. V(V - U~) - ~ ) .  aP)'a#] 

+ [(p~,V(V - Us± ) - "r) " N+ l+'/2 
- -  h(p,,F)" = 0. [541 

However, at any point Q of the segment PP': 

(V - V~)~ = V - Us. 

If  one assumes that p,. is constant and if there is no external fluid, [54] becomes 

h (V>" + div, {[(h (V>'<V>') • aa]aa } 

- ItI' ":'"' t,, 
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Equation [55] is transformed by means of the mass balance and leads to 

8 __l divs(h (T*) ' )  _ ---71 [ 2 H + a N + ]  +ha 
0t ( V ) ' + g r a d s ( V ) "  ( V ) ' - - p , , h  ( F ) ' - - p , , h  L ~ - - - - N ±  . a  3 _] h/2 = 0 .  

As a result, [44] is recovered, where 

(V)" replaces V, 

(F)" replaces L 

and 

div~h(T*).+a[2H_~+N+-] +hI2 
L N± • a 3 J-h/2 

replaces divfi-* 

[561 

Table 1. Balance equations for the thin fluid structures 

First model Second model 

Mass balance 

FLUID 
FILAMENT 

FLUID 
MEMBRANE * 

Linear momentum balance 

Mass balance 

Linear momentum balance 

d R ,  8 
8t +~ ' ~  (R2v) = 0 

8V + (V dV 1 dT 
d~- " Q d s  --ft--~-ffss = 0  

~h 
Ot + div.~(hV) = 0 

0V + grad, V. V - f , -  I div, T~' = 0 
0t p, 

~t R2 + * ~s (R2{v}') = o 

1 8 
- iv)" - p,~R ~ as (R q ~  • p) 

1 fc2H~an~dl=O 
xR2p,. -n£ . n C 

8h 
+ divAh <V)') = 0 

0 
(V) ° + grad,(V) °. (V)" 

1 
- ( F ) "  - ~ div,(h (~-*) °) 

1 [2H_+aN_+]+~'2=0 

P, h L N-+'a3 / I,,2 

5. SOME TYPICAL A P P L I C A T I O N S  

5.1. One-dimensional Equations for Single-phase Flow in Bends 

One-dimensional modeling of  single-phase flow in a straight pipe is based on area-averaged 
equations as derived by Delhaye (1981). This formulation could be easily extended to single-phase 
flow in bends by just changing the rectilinear coordinate into the curvilinear coordinate s along 
the axis of  the bend. This procedure would lead to the following equations: 

mass balance, 

cgt p,, da + Os p,, V~ da = O; 
s s 

[57] 

- - - ( 1 ) - - -  
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and 

momentum balance, 

Ot p,. V~ da + ~s p,. V~ da - p,,F, da 

S S S 

- - -  ( 2 )  . . . . . .  ( 3 )  - - -  

+ ~ss p da - ~ (t • 7v). ~ da 
S S 

f .  
= Jc ~ . ( T . n ~ ) d C ;  

- - -  ( 4 ) - - -  

[58] 

where V~ and V, are the tangential and normal velocity components, F, is the tangential component 
of the applied force F, p is the pressure and ~v is the viscous stress tensor. 

Actually, [57] and [58] are erroneous because they do not reflect the influence of the bend 
curvature. The correct equations are obtained from [26] and [36] in section 3 and read: 

mass balance, 

Ot p,.2 da Os p,. V~ da; 
S S 

- - -  ( 1 ' ) - - -  

[591 

and 

momentum balance (tangential projection), 

d ~ f P , . V 2 d a - f f P , , F ~ A d a  
S S S 

- - -  ( 2 ' )  . . . . . .  ( 3 ' )  - -  - 

+ Os p da - ~s (x. qr~). v da 
S S 

- p , ,V~--~da-  (~" Tv) " ~ d a  = x .  (qY • n~)2 dC. 

S s 

- - -  ( 5 ' )  . . . . . .  ( 6 ' )  . . . . . .  ( 4 ' )  - - - 

[60] 

Some terms are identical in the two systems but terms (1)-(4)  must be replaced by terms (1 ' ) - (4 ' )  
and two new terms (5') and (6') appear in [59] and [60]. These new terms (5') and (6') involve 
the normal components of the velocity and of the stress tensor. 
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Equations [59] and [60] must obviously be complemented by the following projection of the 
momentum equation along the normal direction n to the axis of the bend: 

Ot p,. V. 2 da Os p,. V, V~ da - p,,F. 2 da 
S S S 

c3s n-(T~ . t ) d a  + p,. -~ da + da 
S S S 

-ffl 'orv.,)da=fcn.(T., )XdC. [61] 
S 

In a practical case, a scale analysis of [59]-[61] should be performed to specify the order of 
magnitude of the extra terms or coefficients. 

5.2. Dynamic Centering of Thin Liquid Shells in Capillary Oscillations 
We consider compound drops which consist of a gas domain enclosed within a thin fluid shell 

immersed in an outside gas. Here the inner gas is the same as the outer one. It was observed in 
many experiments that a compound drop in oscillation tends to become concentric. 

The averaged equations established in section 4 can be used to study the motion of such 
compound drop under the following assumptions: 

• The thickness of the liquid shell is much smaller than its characteristic dimension. 
• The internal flow in the liquid shell is ignored. 
• The inner gas is incompressible and the external pressure is uniform. 
• The liquid shell is subjected only to the effects of surface tension and of internal 

and external gaseous pressures. 

The inner and outer surfaces of the axisymmetric thin shell we consider are defined by their position 
vectors Ri and Ro, respectively. The mid-surface is characterized by the spherical polar coordinate 
O,R ^ '  =3 (Ri + Ro). The velocity field for points located on the mid-surface is defined by its tangential 
and normal components It, and V.. The unknowns of this problem are the radius, the equivalent 
surface density Ps, V, and 1/".. 

The mass balance equation, the momentum balance equation and the shell displacement velocity 
can be obtained directly from [50] and [56] of section 4 and read: 

Ops K OPs Ps [c°s ~ oV~ ] 
Ot =R O0 R --~- + f ,  cos~O + V~sin~b -psCV, ,  [62] 

and 

OV, KOVs cos $ Op 
O---t = R O0 V.H psR dO' 

or. KOVo . . . . .  + V:H + I ( p  + Ap) 
Ot R O0 Ps 

where 

[63] 

[64] 

1 OR 
tan # ~ R O0' [66] 

K ~  Vs cos ~,, [67] 

OR 
V. = c o s  qJ -~-, [65] 



BALANCE EQUATIONS FOR FLUID STRUCTURES 625 

H__- _ _ _ _  
1 0 / 

cos $ + ~ (I + sin 2 ~) ( V, sin $ - V, cos ~) 
R 00 

1 2 /~2cos $(V, sin $ - Vscos ~b) 02R 
002, [681 

and 

f cos 0 

/"--" [ a v ,  
L oo 

C=I-R {2 cos 0 

(" . cos 0 ~ sm~' s-~n 0 

L R  002 

0 < 0 < n  

0 = 0 or n, 

+ sin 2 ~ cos ~ - f -  - -  

0 < 0 < n  

0 = 0 o r  n; 

[69] 

R ao 2) [70] 

[71] 

C is the curvature of the shell, P is the inner pressure, p is the mean liquid pressure within the 
shell and Ap is the difference of pressures between the two sides of the shell. The inner pressure 
P, p and Ap are evaluated in terms of interfacial tension, geometrical quantities and V,, V s 
and Ps. 

The same problem was studied by Lee & Wang (1988) but their [3.11], [3.19] and [3.20] are 
incorrect and should be replaced by [62], [63] and [64], respectively. The error comes from their 
expressions for K and H, which are erroneous. According to Lee & Wang, K and H read: 

KLw =-- V, cos ~b -- V. sin ~, [721 

and 

- -  - V c ° s 2  ~ c32R sin3 ff HLW =" KLWR cos ~b d V , R  d0 -f cos~bRsin~k (Vs sin ~b + V, cos ¢) s ~'2 ~---~ k V , - - R  [73] 

The expressions KLW and Htw for K and H should be replaced by [67] and [68] above. 
The problem of the dynamic centering of thin liquid shells in capillary oscillations is currently 

being revisited with the correct physical equations (Coutris 1993a). 

5.3. Annular Jet Instability 

We consider a hollow liquid jet formed by an annular nozzle. The liquid jet is a cylindrical liquid 
sheet enclosing a gas stream. The jet breaks up downstream of the nozzle forming hollow 
capsule-like liquid shells. 

The averaged equations established in section 4 can also be used to study the motion of the liquid 
sheet if it is assumed that: 

• The liquid layer is thin and its thickness is much smaller than its characteristic 
length. 

• The internal flow in the sheet is ignored. 
• The gas inside the sheet is incompressible. 
• The liquid shell is subjected only to the effects of surface tension and of internal 

and external gas pressures. 

The radial position of the liquid sheet is described by the cylindrical coordinates z and R. 
The velocity field for points on the sheet is defined by its tangential and normal components 
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V~ and V.. The balance equations and the definition of the shell displacement velocity can be 
written: 

am am { a V s a2R 2 \ 
at - A - f i r  z - m ~cos O - ~ -  z - V. - -  = cos 0 ] ,  [74] 

/ 

and 

where 

and 

at - A - - -  H V , ,  [751 

a t -  - fffz + HV,. + m-- P - 2tr - -  --az 2 cos 3 0 [76] 

OR 
I/". = cos 0 -~-, [771 

OR 
tan 0 ~ - - ,  [781 

Oz 

m ~-ps R,  [79] 

A -- Vs cos 0, [80] 

(ov. _ ) 
H ~ c o s 0  \--&-z +c°s20-ffZ2 V , + c o s 0  sin 0-~-z2 Vn , [81] 

P-- the  pressure difference between the inside and outside of the liquid shell 

a - - the  interfacial tension. 

The same problem was studied by Lee & Wang (1986, 1989) but the equations proposed by these 
authors are incorrect. Equations [19], [27] and [28] of Lee & Wang (1986) should be replaced by 
[74], [75] and [76], respectively. The error comes from their expression for A and H, which are 
erroneous. According to Lee & Wang, A and H read: 

A LW = COS 0 V~. - V, ~ [82] 

and 

(0rn 02R 2 
HEW COS 0 ik 632 + = v~-~Tz2 cos ~ ) .  [831 

The expressions Aew and HEw for A and H should be replaced by [80] and [81] above. 
The problem of the annular jet instability is currently being revisited with the correct physical 

equations (Coutris 1993b). 

5.4. Dynamics  o f  a Flame Front  

In Candel & Poinsot (1990), an expression for the flame stretch ~bs is derived. With our notation, 
it reads: 

~bs = divs w, [84] 

where w is the velocity of the flame front. 
If  the front propagates in the normal direction at a speed SL, w is the sum of two contributions: 

the local fluid velocity v and the flame speed in the normal direction SLn. As a result ~bs can also 
be written as 

~bs = divsv + SL divsn. [85] 
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The derivation of a balance equation for the flame area per unit mass, denoted by af, is 
straightforward with our method. 

Following section 2, the mass balance equation for a flame front is 

d 
-~ Ps + divs(psw) = 0, [86] 

where Ps is the density of the flame front. It can easily be deduced that, for a r -  l/ps: 

t~t af + v. grads af = afdps. [87] 

If  the flame area per unit volume is considered, the balance equation for the flame area can be 
written as 

d 
dt (P"af) + divs[Par(v + SLn)] +~nn (parSL) = afdPs" [88] 

This is another form of [43] of Candel & Poinsot (1990). 

6. CONCLUSION 

The mass and momentum balances for fluid structures such as lines, filaments, sheets or 
membranes have been derived using original theorems of the Leibniz and Gauss type. The 
demonstrations of these theorems are given in the appendices. 

The consistency of  the formulations has been checked and verified by looking at the asymptotic 
forms of the balance equations for the three-dimensional structures. 

Finally, examples were given for which the use of such balance equations is appropriate. 

Acknowledgements--This work has been performed under the auspices of the Commissariat fi l'Energie 
Atomique (France). The author is fully indebted to Professor Jean-Marc Delhaye for his numerous and highly 
praised comments on the different versions of this paper. This work was undertaken at his suggestion and 
he provided the applications concerning single-phase flow in bends and flame fronts. 

R E F E R E N C E S  

ARIS, R. 1962 Vectors, Tensors and the Basic Equations of  Fluid Mechanics. Prentice-Hall, 
Englewood Cliffs, NJ. 

CANDEL, S. & POINSOT, T. 1990 Flame stretch and the balance equation for the flame area. Combust. 
Sci. Technol. 70, 1-15. 

COUTRIS, N. 1993a The centering of a thin liquid shell: a revisited model. In preparation. 
COUTRIS, N. 1993b The instability of an annular jet and the encapsulation phenomenon: a revisited 

model. In preparation. 
DELHAYE, J. M. 1981 Basic equations for two-phase flow modeling. In Two-phase Flow and Heat 

Transfer in the Power and Process Industries (Edited by BERGLES, A. E., COLLIER, J. G., DELHAYE, 
J. M., HEWlTT, G. F. & MAYINGER, F.), pp. 40-97. McGraw-Hill, New York. 

LEE, C. P. & WANG, T. G. 1986 A theoretical model for the annular jet instability. Phys. Fluids 
29, 2076-2085. 

LEE, C. P. 8£ WANG, T. G. 1988 Centering of a thin liquid shell in capillary oscillations. J. Fluid 
Mech. 188, 411-435. 

LEE, C. P. & WANG, T. G. 1989 A theoretical model for the annular jet instability--revisited. 
Phys. Fluids A1, 967-974. 

MEIER, G. E. A., KLSPPER, A. & GRABITZ, G. 1992 The influence of kinematic waves on jet break 
down. Expts Fluids 12, 173-180. 

NAGHDI, P. M. 1963 Foundations on elastic shell theory. In Progress in Solid Mechanics, Vol. IV 
(Edited by SNEDDON, I. N. & HILL, R.), pp. 1-90. North-Holland, Amsterdam. 

ZAK, M. 1979 Dynamics of liquid films and thin jets. SIAM Jl Appl. Math. 37, 276-289. 



628 N. COUTRIS 

A P P E N D I X  A 

Time Derivatives of  Line Integrals 
Let C(t) be a moving geometrical line. We denote by U(t) the velocity of a point on the line. 

Our objective is to evaluate the derivative of the line integral I, defined by 

i-- fA. g ( M , t ) d s  

where AB is an arc on the line C(t) and g is a function defined on this line. 
At time t, every point on the line is determined by 

3 

OM = OM(p, t) = ~ x,(p, t)e, 
i = 1  

where p is a parameter and xi (i = 1, 2, 3) are the Cartesian coordinates of M with respect to the 
basis {e/}. 

At time t = 0, let ai (i = 1, 2, 3) denote the coordinates of the corresponding point Mo whose 
parameter is Po: 

3 

OM 0 = OM(po, 0) = ~ ai(Po)ei, 
i = l  

where 

P = P(Po, t). 

The arc length is denoted by s for the c u r v e  C(t) and So for the curve Co, and is given by 

s = s(p, t) = s[p(po, t), t], 

with 

So = s(po, 0). 

At time t, the element of arc ds is given by 

ds =~pp dp. 

The line integral I can be written as 

I =  fg  g ( M , t ) d S =  fg g (M, t )  Os a a -~pdp. 

By introducing the initial curve Co, we obtain: 

fA Os ~p j I = gtM(Mo, t), t] ~ ~po apo, 
ono 

hence 

with 

and 

I = f A  G(Mo, t)2dpo 
oBo 

G(M0, t )~g[M(M0,  t), t] 

Opo 
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Therefore, 

dI d f A  d ~ A  ° - -  = - -  g ds = ~ GA dpo 
dt dt s So 

and 

dl  ff~ 0 
dt  = ~o ~ (GR) dpo 

=f oG f so -~- A dp° + so G-~dpo. 
The first term on the LHS can be written as 

f OGAdpo=fAdg Or B-~ ds" 

The second term on the LH$ requires the calculation of 0~/0t. We have: 

~0~-- l 0 [(0~-,/~fio)210, ---2 at 

20t ,=, \Opo,] j 

(ox,'l ox, 
" ~; kOpo/ Opo i=l 

= 

,=, ~Po L dt ,] aPo 

OU OOM 

@o @o 
where U(t) is the velocity of a point on the line C(t). The components U,. are such that 

Ui(xj, t) = U,[s(p, t), t] 
= u , { s [ p ( , o ,  t) ,  t]}. 

Therefore, 

and 

OU OU Os 

@o Os @o 

OU OOM OU OOM(0s'~2, 

Opo Opo ---- 0-3- os \ ~ /  
hence 

~ aU 
- - ~  • 

0t 0s " 

If we introduce this result in the line integral, we obtain: 

0~ 
J" 6 dpo= 6 , . ~ d p o  
J ~  ~ 

= ~ '~-s ds. 
B 

MF 19/4.-~G 
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As a result, we have finally: 

where 

N. COUTRIS 

d L fa( dg -~-s U) g ds = -~  + g~ • ds, 

dg c~g 
dt - 0t + • • U. 

The time derivative of  a line integral can thus be written as 

d L L (  8g Og . 0 U ' ] d  s dt B gds= . ~ + ~ s  ~ 'U+g t  as) " 

Two particular cases of the time derivative of  a line integral can now be given: 

Case 1 

Let us consider a point M attached to the line C(t). Consequently, we have: 

P = P(P0). 

An analogous proof  leads to the following relation: 

d f  A fA( dgdg ~ f )  l a g d s =  a -~-t + ~s ~ " Uc +g~ " ds, 

where Uc is defined by 

[AI] 

[A2] 

OOM 
U c - - ' ~  p~xCd" 

Case 2 

The line considered now is a material line ~(t) .  The proof  is the same as in the general case, 
the velocity V of  a fluid particle has to be substituted for U: 

d f A  ~ A ( O g  Og OV) g d s =  - ~ + ~ s  ~ ' V + g ~ ' ~ - s  ds. [A3] 
B a 

APPENDIX B 

Differential Operators on a Line or on a Surface 

B I. The line (see figure B I) 

• Divergence of  a vector B, 

Divergence of a tensor T, 

• Gradient of a scalar field f ,  

8B 
div t B = • • - - .  

0s 

8 T  
divt~ =~  . - - .  

Os 

~f 
g r a d ~ f  = ~ss T. 
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(r) 

M ( s ) /  

/ 
Figure BI. A line (F). Figure B2. A surface (S). 

B2. 

Gradient of a vector B, 

The surface (see figure B2) 

• Divergence of a vector B, 

and 

d B  
gradl B = ~ z. 

B = B~a~ + B 3 a 3  

div, B = B~ - b~B 3, 

where the subscript I~ stands for the covariant derivative with respect to x ~ and 
b ~-"-- 1/R1 + I/R2, with R~ and R2 as the principal radii of curvature of the surface S. Divergence 
of a tensor T, 

and 

T = T'q~a,,a# + T~3a:,a3 + T3~'a3a~ + T33a3a3 

div s T = (T~ - b ~ T 3~" - -  " ~3 ,, b,. T )a~ + (T~ ~ + b.,, T;'" - b,, T 3 3 ) a 3  . 

• Gradient of a scalar field f ,  

gradsf = a ~'fa a~- 

Gradient of a vector B, 

grads B = [ (B~,  - b~B3)a~ + (B~ + b~,p B~')a3]a a. 

APPENDIX C 

The Leibniz and Gauss Theorems for Surfaces and Segments 

The derivation of equations averaged over an area or a segment requires appropriate limiting 
forms of the Leibniz and Gauss theorems. Starting in each case from three-dimensional relations, 
formulas are obtained involving only quantities connected to the cross section or to the segment. 
We will suppose that the different quantities introduced are smooth enough. 

C I. The Leibniz and Gauss theorems for surfaces 

Let us consider a region surrounding a curve (F) such that, at any point M on the curve, we 
associate a circular section (S) of center M and radius R(s). We consider the volume V generated 
by the surface (S) when M describes the curve (F) between MI and M2 (figure CI). The volume 
V is thus limited by two cross sections St and $2 and the lateral surface (~). 

CI. I. Gauss theorem. The Gauss theorem applied to volume V leads to 

fffdivndv=ffn.nzda+ffn.n, da+f;n.n~da, [CI] 

V ~. S I S 2 
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(r) 

Figure  CI .  A thin fi lament.  
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P' M $1 Sa2 

I ~ S~ 1 

$2 

Figure  C2. A thin membrane .  

where n~ is the unit vector normal to (S) directed away from the volume V and n, (~ = 1, 2) is the 
unit vector normal to (S~) directed away from the volume V. Each term on the RHS of [C1] is 
computed successively by 

fffdivBdv=fM~M2{ff divB2da}ds, [C2] 
V S(M.t) 

where 2 ___- I - x / ~ ,  and 

f B.n~da fMIM2{fC(M,I) B ' I ( I ~  ~S 
If  nc denotes the unit vector normal to the curve (C) located in the cross-section plane: 

B.n~ B, 1 - ~ c o s q ~  - -B~os  

n~ • n c R cos tp 
1 

where 

Consequently, 

and 

Thus, one obtains: 

B = Br Ir + B,  I, + Be ~. 

ffB'n~da=fM ' (I B'-nz 2 d/} ds 
M 2 [.dC(M,t) BE " n c 

E 

ffB'n~da+ffB'n2da=-ffB'z, da+ffB'x~da. 
St $2 Sl S2 

[C3] 

B" n, da = ~ss B.  ~ da ds. [C4] 
= 1.2 I M2 S~t S(Md) 

The combination of the different terms leads to a relation which holds for each part Mm Ms of the 
line (F). An original particular form of the Gauss theorem for the surfaces is then deduced: 

d i v B 2 d a = : - -  B ' t d a  + - - - - - 2 d / ,  
(M.0 n,r • n C S(M,t) S(Md) 

[c5] 
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where n~ denotes the unit vector normal to the surface (E), nc is the unit vector normal to the 
boundary C(M, t) of S(M, t) located in the cross-sectional plane; n,- and nc are directed away from 
the volume V. 

C1.2. Leibniz theorem. The Leibniz theorem applied to a volume ~(M~, M2, t) limited by two 
cross sections (S~) and (Sz) associated to two fixed values Pt and P2 of a parameter p, leads to 

 Iff: ;II  II :v dv = f dv + z" nz da + fv,-  n, da; [C6] 
ct = ,2 

• g "t  E S(M,t) 

vz. n~ is the speed of displacement of the lateral surface (E) and v~. n~ is the speed of displacement 
of the surface (S~) (~ = 1, 2). With the method used above, one obtains an original particular form 
of the Leibniz theorem for a surface: 

0 0 
-~ f f  f2da+(ff-~Ur)'lr ~f f2da+(Ur'~)-~s f f  f2da 

S(M.t) S(M.t) S(M,t) 

= 2 da + Os f(U," ~) da + f Uz" n~ 2 dl, 
(M,t) n ~  • n C 

S(M,t) S(M,t) 

[C71 

where Ur is the velocity of a point attached to the line (F), Us" • is the speed of displacement of 
the section (S) and U~. nz is the speed of displacement of the lateral surface (Y.). 

C2. The Leibniz and Gauss theorems for segments 
The segment considered, PP' is normal to the surface (S) at M (figure C2). The associated volume 

is limited by the surface S~, $2, SA~ and SA2 generated by the normals to (S) intersecting the 
coordinates curves C~, C2, CA~ and C~2 corresponding, respectively, to x t, x 2, x t +Ax ~ and 
x2+ Ax 2 and by the surfaces (S+) and (S_) defined by x3 = h/2 and x3 = -h/2. 

C2.1. Gauss theorem. The Gauss theorem applied to volume V leads to 

fffdivndv=E__,ffn'n da+Effn'na da+ffB'n+da+ffn.n_da.  .2 , .2 [c8] 
V S~ St~ S+ S_ 

The different vectors introduced are unit vectors normal to the corresponding surfaces (Si) and 
directed away from volume V. 

As developed in section C 1.1, each term on the RHS of [C8] is written as 

div B dv = div B# dx 3 da. [C9] 
d d  I . d - h / 2  

v s 

By means of [I)6] in appendix D: 

ffB.n+da+ffB.n da=ffB.A da-ffB.A;da. 
S+ S_ S+ S_ 

Consequently, one obtains: 

f f B . n + d a + f f n . n  da 211 - h/2 N / ~  • 

S+ S_ S 

If Np denotes the unit vector normal to (S_) at P and Nv is the unit vector normal to (S+) at 
P' outwardly directed: 

:) [ B ' ( A I A A 2 ) ] x 3 = _ h / 2 =  N--~.a3p P d e n o t e d b y  Be'NPpe~/'a,Np.a 3 
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then 

ff If = ff[Bp," Np, Bp'Np ] B.n+ da + B-n da jjL ,. N,.a3/ap da. [CIO] 

S+ S S 

According to Naghdi (1963), one has 

B ' n ,  da = v ~  / I~B~dx3~ds ,  
"~ I , J  h/2 ) 

S~ 

where v, is the unit vector normal to S~ at any point pertaining to C and outwardly directed. As 
a result, one obtains: 

B-n, da + B'nA. da = | | d i v , [ |  un, dx da, 
a ,2 ~ ,2 ,,j ,,j \ . , ,  h/2 

s, s~ s 

where 

and 

B H -~(B • g~)a~ [C11] 

2 

div s B = B~ - 2 H B  3 with B = ~ B~a~ + B3a3, 

where g" is defined as in appendix D and the subscript I stands for the covariant differentiation 
with respect to a~# and H is the mean curvature of the surface (S). 

The combination of the different terms leads to a relation which holds for each part (S) of the 
surface. A particular form of the Gauss theorem for segments is then deduced: 

f+h/2 I +h/2 #p,B'Np, /apB'Np div B# d x  3 = di% / ~ B  d y  3 + - -  [C12] 
.1 -h/2 d -h/2 Nv" a3 Np • a 3 

In the following, the last two terms will be written as 

[/tB " N+l+J'/2 

C2.2. Le ibniz  theorem. The Leibniz theorem applied to the volume ~:(x ~, x 2, Ax ', Ax 2, t) with 
fixed x t, x 2, Ax ~ and Ax 2, leads to 

~ff;fdv=fff~tdv+;ffV,'n,,da, [Cl3] 
,~ I ¸ ,~ 

where Va" na is the speed of displacement of the surface ~¢, the boundary of ~/F. 
With the same method as in section C2.1 an original particular form of the Leibniz theorem for 

the segments is derived: 

0i+,n i+h/2 /(,+h/2 ) fg  dx 3 + div, U~ l t f d x  3 + U,. grad, [ | # f d x  3 ~ 
d -h /2  " j - h / 2  " \ d -h /2  

= ,+,/2 a f  //~ +/,/2 ) Lr U s + ' N + ]  a3---..J-h/2 [C14] / :- + divJ / dx 3 
J-h/2 Ct \,J -h/2 

where U, is the speed of the points on surface (S), Uzj,_=(Uz.g~)a~, Us± .N± is the speed of 
displacement of  the interface (S±), Us± is the speed of a point located on the interface (S_+), N± 
is the unit vector normal to the interface outwardly directed and 

2 

di% V = V~ - 2 H V  3 with V ~--- E V~aa  "]- V 3 a 3 "  
0¢=1 
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C3. Generalization 

The limiting forms of  Gauss's theorem can be generalized for tensors. Only the results will be 
given here. 

For  a surface: 

div T). da = -:- q]- • gU. da + 2 dl, 
.JC(s) nE " nc 

S(s) S(s) 

[c15] 

where gl is defined by [D2]. 
For  a segment: 

+t1/2 /l"+h/2 \ F T -N  -I+ht2 I 
div T• dx3 = div,|  / ,u(l" " g') dx3a,) + I_#.l ~ J  

,I - h/2 ' , , d -  h/2 - hi2" 

Similarly, the limiting forms of  the Leibniz theorem can be established for a vector: 

[C161 

~t~9 ffB2da+(CgUr'') ff ds ")-~sC3 ff B'da 
S(s.t) S(s.t) S(s,t) 

=ff~t2da+ffB(Us'')da+ L,,,, B U~: "n" "L d l n , > -  • nc 
S(s,t) S(s,t) 

[C171 

and 

B / . / d x  3 + div s U, B #  d x  3 + grads B #  d x  3 • U s 
- ~  J-h~2 J - h / 2  -h/2 

d-h/2 -~-#  d x 3 + d i v '  BU~ilk/dx3+ f B  - 
J-h~2 _ " a3 J -h /2"  

[C18l 

A P P E N D I X  D 

Curves and Surfaces 

D I. Space curves 

Let (F) be a space curve (figure D1). The coordinates of any point M on this curve are functions 
of  a single parameter. The arc length s is taken as the parameter along the curve. (M; ~, n, b) denotes 
the Frenet-Serret  frame. The Frenet formula can be written as 

d~ n dn • b db n 

d s = ~  ' d---~ = ~ ~'-' d s - ~ - - '  

where 1 /~  is the curvature of  the curve and 1/~- is the torsion. 
Let us consider a region surrounding the curve (F) such that, at any point M on the curve, we 

associate a circular section (S) of  center M and radius R(s)  smaller than the radius of  curvature 
~¢ of  (F). The volume generated by the surface (S) is now considered when M describes the curve 
(F). Let (Ig) be the boundary surface (figure D2). The cross section (S) is referred to Cartesian 
coordinates or polar coordinates with respect to (M; n, b): 

M P  = xn + y b  = r cos tpn + r sin tpb. 

Let (s, x, y)  or (s, r, tp) be the curvilinear coordinate systems for this domain (Aris 1962). 
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Figure DI. A space curve. 

M Y " b 

(r) 

Figure D2. Volume generated by surface (S). 

The local base vectors associated to (s, x, y) are defined by 

1 
gl =2~ + n - - ~ b ,  

gl ---- B, 

g3 = b, 

J 2 = 1  x 

The reciprocal basis denoted by (g~, g2, g3) is defined by 

l gl =~X, 

g2 = Y 
- 3 . 2 ~  +n ,  

g3 Y 
= +-f~ +b. 

Thus, an element of volume d V is given by 

dV = (gM, g2, g3) ds dx dy = v/g ds dx dy, 

where 

[DI] 

[D2] 

x 
x/g = l 9~; [D3] 

g being the determinant of the metric tensors (g~j). 
In what follows, all Latin indices take the values 1, 2, 3 and Greek indices the values 1, 2. 

D2. Surfaces in space 
Let (S) be a space surface. A curvilinear coordinate system (x M, x 2) is defined for the surface. 

The local base vectors associated to (S) at point M are (aM, a2, a3). We have the relations: 

OM OM 
A 

OM Ox I dx 2 

a~ "--~-'~x~; a3-'- OMox' ̂O-~x:Om I' 

asp is the metric tensor (Aris 1962) and a is the determinant of the surface metric tensor a~#. 
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A region surrounding the surface (S) is defined as follows. For  every point M located on (S), 
the normal to (S) and two points P and P' lying on this normal are associated such that: 

h 
MP '  = MP  = ~ a3, 

where h depends on x I and x 2 and h i2  is supposed to remain smaller than the smallest principal 
radius of  curvature of  the surface. 

The domain V in consideration, is the one generated by PP' when M moves on the surface. The 
position vector of  every point Q of  this domain V can be located by 

h 
OQ = OM + x a 3 ,  Ix31 ~<~; 

(x I, x 2, x 3) is a curvilinear coordinate system for V. The local basis at Q (g,, gz, g3) is defined by 

gl = at + x 3 o a---2 
~X 1 ' 

3 63 a3 [D4] 
g2=a2 + x  ~5x2, 

g3 = a3" 

The second fundamental form of  the surface (S) is given by (Naghdi 1963): 

) g ,  __-- ~a711. 
: '~ '  w h e r e  #~ = 6"-' - -  x3b~. [D5] 

g3 = a3,  J 

The reciprocal base vectors of  the space coordinates are (g', g2, g3). An element of  volume d V can 
be written as 

dV = ( g l ,  g2,  g3) d x l  d x 2  d x 3  = ~ ' g  d x l  d x 2  d x 3 ,  

d V =  #~/-d dx I dx 2 dx 3, [D6] 

where g is the determinant of  the metric tensor gij, a is the determinant of  the metric tensor a,, ,  
# is the determinant of  elements #~,/~ = 1 - 2 H x  3 + K(x3)2,  H is the mean curvature of the surface, 

I ~ I # = ~b,, K is the Gaussian curvature, K = b~b I, - 2 , b ,b2  and V/~ dx dx 2 is an element of area on 
the surface (S). 


